The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 0 X X X^2 X X 0 X^2 X^2 X^2 0 0 X X 0 X^2 X X X X 0 X^2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 X X 1 0 X 0 X 0 0 X X X^2 X^2 X^2+X X^2+X X^2 X^2 X^2+X X^2+X 0 X^2 X X^2+X 0 X^2 X X^2+X X^2 0 X^2+X X X^2 0 X^2+X X X^2 X X 0 X^2+X X X^2+X X^2+X 0 X^2 X X X X X X X^2 0 X^2 X 0 X^2+X X X 0 0 X^2 X^2 X^2 X^2 0 0 X X X^2+X X^2+X 0 X^2+X 0 X^2+X X X X^2 X^2 X^2 0 0 0 X X X^2 X^2+X X^2+X X^2 X^2 X X^2+X 0 0 X^2+X X X^2 0 X X 0 X^2 X^2+X X^2+X X^2 X^2 X^2+X X^2+X X^2 0 X X 0 X X X^2 X X 0 0 X^2 X X X X^2+X X^2+X X X^2 0 X X X^2+X X^2+X X^2+X X^2+X 0 X^2 0 X^2 X^2 0 X X^2+X X^2+X X X X^2+X X^2+X X 0 0 X^2 X^2 X^2 0 X^2 0 X^2 X^2 generates a code of length 78 over Z2[X]/(X^3) who´s minimum homogenous weight is 77. Homogenous weight enumerator: w(x)=1x^0+24x^77+76x^78+15x^80+8x^81+3x^86+1x^102 The gray image is a linear code over GF(2) with n=312, k=7 and d=154. This code was found by Heurico 1.16 in 0.783 seconds.